Basic Space Physics - COURSE SYLLABUS | 1. | Course title: | | | |-----|---|--------------|--| | | Basic Space Physics | | | | 2. | Lecturer: | | | | | Prof. dr hab. Jan Błęcki | | | | 3. | Field, type and level of studies, year of study: | | | | | Space plasma, magnetosphere, ionosphere, space weather, all years of study | | | | 4. | Course character: | | | | | monographic lecture | | | | 5. | Teaching method: | | | | | traditional or on-line | | | | 6. | Language: | English | | | 7. | Course type and number of hours: | | | | | lecture, 36h | | | | 8. | Estimated load of student's independent work: | 20h | | | 9. | Total workload and number of ECTS points: | 56 h, 3 ECTS | | | 10. | Short description and main focus of the course: | | | | | The Earth in the Solar System and in the Universe. Earth's atmosphere –its structure and dynamics. Plasma – definition and fundamental features. The Sun –its structure, activity and Solar Wind. Magnetic Field of the Earth. The Ionosphere – origin, structure and variability. Propagation of the electromagnetic waves in the ionosphere and influence of the disturbances in space on it. The Magnetosphere – creation, structure and processes within it. Disturbances in the near Earth space- their sources and physical processes responsible for their. Overall picture of the Solar-Earth connection s- Space Weather. Cosmic rays – basic information. Influence of the disturbances in the space around Earth on the technical constructions in space and on the ground and on the people. | | | | 11. | References: | | | | | Wolfgang Baumjohann, Rudolf Treumann, Basic space plasma physics.
May-Britt Kallenrode, Space Physics.Tamas I.Gombosi, Physics of the Space Environment. | | | | 12. | Prerequisites: | | | |-----|--|---------------------------|--| | | Good knowledge of physics and mathematics on University level | | | | 13. | Educational outcomes: | PQF level 8 codes: | | | | Knowledge: The student knows/is able to: Explain the Earth's place in the Solar System and Universe and its significance for space physics. Describe the structure and dynamics of the atmosphere, ionosphere, and magnetosphere. Explain the Sun's structure, activity, and solar wind, and their influence on near-Earth space. Define plasma and its fundamental role in space environments. Summarize the origins and effects of space disturbances, cosmic rays, and space weather on Earth. | P8S_WG, P8S_WK | | | | Practical Skills: The student is able to Analyze how electromagnetic waves propagate in the ionosphere and assess the impact of solar and geomagnetic disturbances on communication and navigation systems. Apply fundamental space physics concepts to interpret space weather data and predict its potential technological effects. Use simplified models to represent processes in the solar-terrestrial system (e.g., plasma behavior, magnetospheric dynamics). | P8S_UW, P8S_UK,
P8S_UO | | | | Social Skills: The student is ready to: • Evaluate the societal importance of understanding space physics for protecting technology, infrastructure, and human health. • Develop critical thinking and scientific reasoning when discussing the impacts of solar-terrestrial interactions. • Collaborate in discussions on space-related challenges and their implications for sustainable use of space. | P8S_KK, P8S_KO,
P8S_KR | | | 14. | Evaluation of the educational outcomes: | | | | | written exam, | | | | 15. | Criteria to complete the course: | | | | | Presence on lecturs, final exam min.60% correct answers | | | | 16. | Contact with the lecturer: | | | | | Email:jblecki@cbk.waw.pl, room 25. | | |